Kubernetes Observability Challenges: The Need for an AI-Driven Solution

Kubernetes provides abstraction and simplicity with a declarative model to program complex deployments. However, this abstraction and simplicity create complexity when debugging microservices in this abstract layer. The following four vectors make it challenging to troubleshoot microservices.

  1. The first vector is the Kubernetes microservices architecture, where tens to hundreds of microservices communicate. Debugging such a componentized application is challenging and requires specialized tools.
  2. The second vector is the distributed infrastructure spread across heterogeneous on-premises and cloud environments.
  3. The third vector of complexity is the dynamic nature of Kubernetes infrastructure. The platform spins up required resources and provides an ephemeral infrastructure environment to scale the application based on demand.
  4. Lastly, in such a distributed environment, Kubernetes deployments need fine-grained security and an observability model with defense-in-depth to keep them secure. While modern security controls effectively protect your workloads, they can have unintended consequences by preventing applications from running smoothly and creating an additional layer of complexity when debugging applications.


Read our white paper: Purpose-built, full-stack observability for microservices and containers 


Today, DevOps and SRE teams must stitch together an enormous amount of data from multiple, disparate systems that monitor infrastructure and services layers in order to troubleshoot Kubernetes microservices issues. Not only is it overwhelming to stitch this data, but troubleshooting using this data requires an understanding of monitoring systems at different levels of the stack. The result is that DevOps teams spend an enormous amount of time troubleshooting Kubernetes microservices issues.

Given the complex nature of Kubernetes microservices deployments and the overwhelming amount of data generated, without machines to help you diagnose and troubleshoot, it just may not be humanly possible. And certainly not in an environment where companies are running mission-critical applications, some customer-facing, where application outages or bad customer experience can cause a significant revenue impact. This problem is only getting worse by the day, given the density of applications and the dynamic nature of the computing environment.

We’ve spent a lot of time listening to you, our community, and our customers to better understand what you need to secure, observe, and troubleshoot your mission-critical microservices running on Kubernetes. We have synthesized countless hours of feedback to deliver a new product offering designed and built exclusively for Kubernetes that will enable SREs, DevOps engineers, and service owners to secure, observe, and troubleshoot Kubernetes deployments across heterogeneous environments.

Join me for this exclusive event where we will share the details of our new product offering.


Related content: Read our guide to Kubernetes monitoring


Join our mailing list

Get updates on blog posts, workshops, certification programs, new releases, and more!